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Abstract
We study by computer simulation the ‘Hawkes process’ that was proposed in
a recent paper by Crane and Sornette (2008 Proc. Natl Acad. Sci. USA 105
15649) as a plausible model for the dynamics of YouTube video viewing
numbers. We test the claims made there that robust identification is possible
for classes of dynamic response following activity bursts. Our simulated time
series for the Hawkes process indeed fall into the different categories predicted
by Crane and Sornette. However, the Hawkes process gives a much narrower
spread of decay exponents than the YouTube data, suggesting limits to the
universality of the Hawkes-based analysis.

PACS numbers: 89.75.Fb, 89.20.Hh, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently [1], Crane and Sornette analysed the viewing of YouTube videos as an example of a
nonlinear social system. They identified peaks in the time series of viewing figures for around
half a million videos and studied the subsequent decay of the peak to a background viewing
level. A self-excited Poisson process, or Hawkes process [2], was proposed as a model of
the video-watching dynamics, and a plausible link made to the social interactions that create
strong correlations between the viewing actions of different people. Individual viewing is not
random but influenced by various channels of communication about what to watch next.
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The Hawkes process has a Poisson distributed number of views, with an instantaneous
rate given by

λ(t) = η(t) +
∑

{ti<t}
μiφ(t − ti). (1)

Here η is a noisy source term (allowing viewing to occur even for a completely dormant video,
for instance) and the summation describes how past viewing events at times {ti} influence the
current event rate. The coefficient μi is the number of potential viewers influenced directly by
person i who viewed a video at time ti; the function φ describes the waiting time distribution
for those influenced, between trigger and response. (Put differently, this is the distribution of
waiting times between finding out about a particular video and actually viewing the video.)
If φ(t) is a power-law memory function as used in this work, the resulting process is also
known as an epidemic type aftershock sequence (ETAS) model [3], and can be used to model
earthquake aftershocks.

On the basis of previous work [4], Crane and Sornette chose a long-memory waiting time
distribution

φ(t) ∼ t−(1+θ), θ ∈ (0, 1). (2)

For fixed θ (we address variability in θ later on), the behaviour of a time series generated
by such a Hawkes process then depends on the distribution of μ. There are four separate
dynamical classes, two if a viewing shock happens from an external stimulus, two from
internal dynamics [5]. In this paper we address only the dynamics of externally shocked time
series, but for completeness all four dynamic classes will be outlined below.

In each dynamic class, there is a different prediction for the power-law decay of the
activity level following an initial shock. The power laws involved are quite distinct for each
class, and predicted by [5] to depend solely on θ , whereas the statistics of μ control solely
which class one is in. Therefore, if equation (2) were really to hold (with a unique θ ) one might
naively expect the distribution of power-law exponents observed in the data to collapse onto a
set of discrete delta-functions, one for each dynamic class. On reflection, however, this cannot
be correct since an individual activity burst represents a sequence of discrete events which
(unless the total number of these is enormously large) is unlikely to be fully self-averaging
for the purposes of fitting a power law to the long-time decay. In practice for the YouTube
data [1] the distribution of fitted exponents is very broad with, at best, bump-like features at
the expected discrete exponent values. Crane and Sornette get around this by using a quite
separate method (detailed below) to classify the dynamic class of each burst, and then showing
that the subdistributions for each class are unimodal with modal values close to the expected
one for that class. The overlapping exponent distributions that necessitate this procedure do
however call into question the announced robustness [1] of the dynamic classes inferred from
the Hawkes model.

In the present work we perform simulations that shed light on how much of this exponent
variability can be expected to arise from the Hawkes process itself. Any variability beyond
this level in the YouTube data is evidence that equation (2) does not really describe the social
dynamics of YouTube. Of course, nobody would expect these dynamics to be captured exactly
by the Hawkes process; however, behind the concept of robust dynamic classes in [1] lies a
broader notion of universality. For instance in equilibrium critical phenomena, a very simple
model (the Ising model) captures to arbitrary accuracy the universal features of a wide class
of phase transitions involving order parameters of the same symmetry. In the wider context
of nonequilibrium criticality, the universal status of simple models is less well established,
and deserves detailed attention. Our simulation results suggest that this universality may
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be somewhat limited, at least if one is interested in the distribution of fitted exponents for
individual activity bursts within each dynamic class.

In what follows we first classify all four dynamic regimes before presenting the analysis
of our results.

2. External shock

In this regime, the viewing rate is first dominated by the η term in equation (2). At some time,
t0, the video gains widespread public attention. (It might be featured in a national newspaper,
or on some high-traffic website; or it may relate to a famous person whose death is suddenly
announced.) This produces a spike in the viewing figures which then decay away. The form
of the decay depends on the distribution of μ.

• If 〈μ〉 = 1, a cascade of viewing events occurs and the time series decays from the shock
like ∼ t−(1−θ). This is termed a critical decay.

• If 〈μ〉 < 1, only first-generation viewing events are important (i.e. those stimulated by
the external source) and the time series decays like ∼ t−(1+θ). This is a subcritical decay.

3. Internal shock

A particular series of viewing events can lead to an internally created maximum in the time
series (above that expected for a Poisson noise process). This internal shock has a different
decay exponent again from the externally induced peaks. The two internal dynamic classes
are as follows.

• A simple noise process if 〈μ〉 < 1; no coherent peak arises.
• A peak grows and decays like ∼t−(1−2θ); this occurs if 〈μ〉 = 1.

4. Classification and exponent values

If this model is correct for the dynamics of video views, it should be possible to identify the
different dynamic classes by finding peaks in the viewing time series and then fitting a power
law to the subsequent decay. These power laws should form a distribution which arises as
the merger of the various classes; if the individual activity bursts can separately be classified,
the subdistribution for each class can be extracted. Crane and Sornette perform such an
analysis and by fitting to the modal exponent for each class infer a value for the exponent θ in
equation (2) of θ ≈ 0.4. We therefore create artificial time series with 〈θ〉 = 0.4 for best
comparison with their data. With this choice, we expect to extract decay exponents (recalling
that we only study the externally shocked case) of

• βsc = 1 + θ = 1.4 and
• βc = 1 − θ = 0.6.

As mentioned previously, the model might lead one to expect δ-function peaks in a PDF
of decay exponents, corresponding to the various dynamic classes. The data presented in [1]
show weak peaks at these values, but with a significant spread. In particular, some of the
extracted exponents would imply values of θ that lie outside the range 0 < θ < 1 required
by the model itself. With the help of our simulation data, we can look at whether the spread
arises through miscategorization; a poor fitting method; fluctuations in the fitted exponents
due to noise inherent in the Hawkes process itself or failure of the Hawkes model to accurately
describe the YouTube data.
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5. Generating the synthetic data

We carry out a discrete-time simulation of the Poisson/Hawkes process, restricting attention to
activity bursts initiated by external shocks. (We generally take each initial shock to comprise
N0 = 5000 views.) We choose to generate a random number of views from a Poisson
distribution with given mean at each time step and update the rate accordingly afterwards.
Effectively, we treat the continuously varying λ(t) as a constant, generate a given number of
events and then modify λ according to equation (1). We must also choose what values θ and
μ can take. Additionally, we need a normalization for the distribution of waiting times, φ.
Following [1] we take this distribution normalized to unity (so that all those ‘influenced’ to
watch a video by a particular viewing event do watch it eventually). Remembering that the
waiting time will be an integer (due to our simulation strategy), we have

φ(t) = 1

t1+θ ζ(1 + θ)
(3)

with ζ the Riemann ζ -function. This ensures
∞∑

t=1

φ(t) = 1. (4)

Our algorithm for generating the synthetic data is therefore as follows.

(i) Shock the system by creating N(0) = N0 initial viewing events.
(ii) For each viewing event, generate the number of subsequent viewers μi by sampling from

P(μ). At time t we therefore seed n = ∑N(t)
i=1 μi future viewing events. Each of these n

future viewers has their own decay constant θi drawn from P(θ).
(iii) Generate a Poisson event rate λ(t) by summing over the past history according to

equation (1).
(iv) Use this rate to generate the number of viewing events N(t) between time t and t + δt .
(v) Increment t by δt and repeat steps (ii)–(v) until the maximum specified time has been

reached.

The model analysis in [1] assumes that all θ values are equal. It is, however, not clear
that all interactions would involve exactly the same response kernel. If those influenced have
a distribution of waiting habits, this can safely be averaged unless there is a correlation with
the person exerting the influence (so that θ varies between the events i in equation (2)). To
allow for the latter possibility we carry out simulations not only with a single θ = 0.4 but
with a random distribution of θi to see if this modifies the results. For the latter we choose θ

from a truncated Gaussian with mean 0.4 and standard deviation 0.2 (restricting the support
to θ ∈ (0, 1)).

Finally we need to choose the statistics of μi . We will see that the particular choice of
distribution does not make an appreciable difference to the results for the externally shocked
system (although as detailed above, the value of 〈μ〉 is important). Here we present results
where μ is drawn from appropriately weighted δ-function distributions as well as Poisson
distributions.

6. Fitting the data

We estimate decay exponents from the artificially produced time series both via the method
described in [1] and using a maximum likelihood estimator. The least squares estimator used
in [1] can give incorrect parameters [6] since some of the assumptions behind it are violated
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for power-law decays. However, in our study we find little difference between the maximum
likelihood decay exponents and the least squares exponents, which is evidence that errors in
the exponent estimation method used in [1] are not the main cause of the large spread of
observed exponents.

6.1. Maximum likelihood estimator

Each post-shock time series decay has two free parameters once the peak has been identified:
the decay exponent β, and the time at which the peak has decayed to the background noise
level tmax. To construct the maximum likelihood estimator (MLE) for β, we assume the data
to be independent identically distributed random variables drawn from a discrete power-law
distribution, P(t, β). That is, with a peak occurring at t = 0, we expect, for t = 1, . . . , tmax

P(t, β) = t−β

Htmax,β

(5)

where

Htmax,β =
tmax∑

k=1

k−β (6)

is a generalized harmonic number.
For every possible tmax we find the best fit value of β for this distribution using a maximum

likelihood estimator. For a time series A(t), our data set consists of A(ti) observations at each
time ti. Each of these tis has an individual likelihood given by P(ti, β). We assume each
observation of ti is independent and so the likelihood of the data set factorizes into the product
of the individual likelihoods:

L(β) =
∏

{ti�tmax}
P(ti, β). (7)

To find the best fit value of β for a given data set, we maximize the likelihood with respect
to β. (In fact, since the likelihood is such a small value, we instead maximize the logarithm
of the likelihood, but this gives the same result.) To find the best value of tmax we follow the
method of [6] and choose tmax which minimizes the Kolmogorov–Smirnov distance statistic.
That is, for each value of tmax we find the best fit decay exponent and calculate

D = max
x

|E(x) − C(x)| (8)

where E(x) is the empirical cumulative distribution function, and C(x) is the best fit hypothesis
cumulative distribution function. We then pick tmax as that value which minimizes D. (Note
that this fitting method, while finding the best fit, tells us nothing about the quality of that fit.)

6.2. Least squares estimator

We also calculate the decay exponents for the same time series using the method described by
Crane and Sornette [1]. This uses a least squares regression on the data set to find the decay
exponent from the peak over a fixed window size. For each fit, they look at the distribution of
the relative residuals, i.e. the difference between the model and the empirical data, divided by
the expected value at that point. If the relative residuals are not distributed normally, the fit for
that window size is rejected. The best fit to the data is chosen to be the largest window size
with normally distributed relative residuals. Following [1] we reject the fit if the hypothesis
of a normal distribution is violated at the 1% level using a χ2 test.
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6.3. Fitting to an ensemble average

The individual time series that we generate are subject to a reasonable amount of noise giving
a spread of best fit decay exponents. Given that we control the time and size of the initial
shock, we can easily obtain better statistics for the different parameter choices by considering
ensemble averaged time series. This allows us to observe the behaviour of the decay for a
longer time and get a better fit for the decay exponents.

The fitting method in this case is as before; we obtain the best fit β value by maximizing
the likelihood of the data. The decay now occurs over the whole tail of the time series and
so we do not need to find tmax; we can set it manually as equal to the largest time in our data
set. We fit both from the peak of the decay and the ‘tail’. To determine where the tail of the
data starts, we follow the same procedure as detailed above for finding tmax, only this time we
apply it to find tmin. That is, for each tmin value, we calculate D (equation (8)) of the best fit
and subsequently choose as our lower cut-off that tmin which minimizes D. We obtain errors on
our estimates of β by noting that our MLE is asymptotically optimal [7]; for N observations,
the variance in the estimated value is therefore given by the inverse of the observed Fisher
information [8]

Var(β) = 1

NJ (β)
(9)

with

J (β) = − 1

N

∂2 logL(β)

∂β2
(10)

which can easily be obtained numerically. The MLE is asymptotically Gaussian with mean β

and variance given by equation (9) and so confidence intervals are just the standard Gaussian
ones.

7. Results

To begin, we look at the behaviour of the ensembled-averaged time series. As expected, we
see a clear distinction between the subcritical decay (where 〈μ〉 < 1) and the critical decay
(with 〈μ〉 = 1). The best fit decay exponents are also those expected (figure 1).

The difference between critical and subcritical decays remains when we draw θ from
a Gaussian distribution (figure 2). We do, however, note a significant difference from the
single-valued θ case: the numerical values of the decay exponents no longer agree well with
the predicted values.

Note how the subcritical decay appears to exhibit a crossover between a short-time
‘critical’ decay exponent and long-time subcritical decay. Increasing 〈μ〉 towards the critical
value of unity moves the crossover to later and later times. Interestingly, when θ is drawn from
a Gaussian distribution, both the critical and subcritical decays exhibit some sort of crossover
behaviour, not seen in the critical decay for single-valued θ . This crossover can contribute to
the spread of exponents in the subcritical case, since the fitting mechanism may pick up the
early time decay. The crossover observed is discussed in detail in the context of the ETAS
model in [3, 9].

We now look at the distribution of decay exponents of individual time series obtained
from both the MLE and least squares estimator. Our results for the ensembled-averaged time
series indicate that we will likely not see the asymptotic exponent in the subcritical case if
we fit the entire post-shock time series (tmin = 0), as the decay exponent will be skewed by
the early time ‘critical’ decay. We therefore show results with tmin = 0, 10, 20 and 30; these
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1 10 100 1000 10000

1e−03

1e−01

1e+01
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Time
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t(−0.596±0.00086)

t(−1.39±0.0029)

Critical decay; P(μ) = 0.5(δ(μ − 2) + δ(μ))
Subcritical decay; P(μ) = 0.5(δ(μ − 1) + δ(μ))
Critical decay; P(μ) = 0.25Poisson(4)+ 0.75δ(μ)
Subcritical decay; P(μ) = 0.125Poisson(4)+ 0.875δ(μ)

Figure 1. Ensemble average decay exponents with P(θ) = δ(θ − 0.4) and P(μ) as indicated.
Each data set is the average of 700 realizations with an initial shock of 5000 views. Lines show the
best fit decay exponent in the tail of the decay (t � 8 for critical and t � 344 for subcritical decay)
obtained from the MLE, ± figures are 95% confidence intervals whose calculation is detailed in
the text. The decay exponents are in good agreement with the theoretical values of 0.6 and 1.4.

1 10 100 1000 10000

1e−03

1e−01

1e+01

1e+03

Time

Views

t(−0.89±0.0024)

t(−1.28±8e−04)

Critical decay; P(μ) = 0.5(δ(μ − 2) + δ(μ))
Subcritical decay; P(μ) = 0.5(δ(μ − 1) + δ(μ))
Critical decay; P(μ) = 0.25Poisson(4)+ 0.75δ(μ)
Subcritical decay; P(μ) = 0.125Poisson(4)+ 0.875δ(μ)

Figure 2. Ensemble average decay exponents with P(θ) = N(0.4, 0.2) and P(μ) as indicated.
Each data set is the average of 700 realizations with an initial shock of 5000 views. Lines show
the best fit decay exponent in the tail of the decay (t � 114 for critical and t � 14 for subcritical
decay) obtained from the MLE, ± figures are 95% confidence intervals. The decay exponents are
no longer in good agreement with the theoretical values of 0.6 and 1.4.

latter fits will give us an indication of what the tail exponent looks like. The results for a
single value of θ are shown in figure 3, those with θ from a Gaussian distribution are shown in
figure 4.

As expected, fitting the entire post-peak time series underestimates the subcritical decay
exponent. Both fitting methods pick up the early time decay, which is slower; once the early
time peak is ignored, the decay exponents are more similar to the tail seen in the ensemble-
averaged case. We note that the fits for tmin � 1 do have quite a large spread of exponents.
This is due to poor statistics in the tail of the decay: the fluctuations are large enough that
we occasionally pick up a highly anomalous decay exponent. This form of statistical noise
appears to be intrinsic to the Hawkes process once the data are filtered by tmin. Improved fits,
and presumably also narrower distributions of the fitted exponents, would arise if we used
much larger initial shocks (N0 � 5000).
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Figure 3. Histograms of extracted decay exponents for critical and subcritical time series and
P(θ) = δ(θ − 0.4), initial shock is 5000, 700 realizations. The grey histograms show exponents
obtained from nonlinear least squares fitting, white histograms are obtained from MLE fits. Note
how there are two distinct peaks in the distribution, corresponding to critical and subcritical decays.
The subcritical peak moves from β ≈ 1 to β ≈ 1.4 when we avoid picking up the early time critical
decay described in the text.

Our choice of N0 is however consistent with the statements in [1] of mean total views in
the tens of thousands (with at least 20% of these viewed on the peak day) for the shocked case.
It is intended to give a realistic estimate of the intrinsic noise in the Hawkes process, to see
if this can account for the large exponent spread actually found in [1]. Comparison of their
figure 4 with our figures 3 and 4 shows such an explanation to be implausible: the exponent
spread in the YouTube data is much too large, particularly for the subcritical case. We have
also performed simulations with N0 = 500 and N0 = 50 000, i.e. one order of magnitude in
either direction from the results reported here. In studying the ensemble average of 700 such
time series from these simulations, we find that we cannot reject, at the 95% significance level,
the hypothesis that the data are the same as those we have reported for N0 = 5000. In other
words, the size of the initial shock does not affect the statistics of the resulting time series. For
the small initial shocks (N0 = 500), the spread of individually fitted exponents is indeed larger
than those we show here with N0 = 5000 and vice versa for the larger shocks (N0 = 50 000).
This is simply due to the fitting method being more (less) affected by statistical fluctuations.
The peaks of the exponent distributions do not, however, change appreciably.

7.1. Classifying time series

Crane and Sornette do not have a priori knowledge of which dynamic class each time series
belongs to. Because the exponents do not fall into clear classes, they use a classification
method based on the fraction of the total views that arise on the day of maximal viewing,
termed the ‘peak fraction’ (F). (This fraction is of course a measure of the steepness of the
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Figure 4. Histograms of extracted decay exponents for critical and subcritical timeseries and
P(θ) = N(0.4, 0.2), initial shock is 5000, 700 realizations. The grey histograms show exponents
obtained from nonlinear least squares fitting, white histograms are obtained from MLE fits. Note
how there are two distinct peaks in the distribution, corresponding to critical and subcritical decays.
The subcritical peak moves from β ≈ 1 to β ≈ 1.3 when we avoid picking up the early time critical
decay described in the text.
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Critical, θ from Gaussian distribution
Subcritical, θ from δ function distribution
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Density
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Figure 5. Distribution of peak fractions for critically and subcritically decaying time series.
Parameter values as indicated in legend. Choosing a cutoff value of F = 0.2 for the peak fraction
would result in no misclassifications.

subsequent decay, hence of β.) In our simulations, since we know 〈μ〉, and hence which class
any given time series is actually in, we can look at the peak fraction and see if this method
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allows for any misclassification. The classification according to F in [1] is to consider F � 0.8
as an exogenous subcritical decay, 0.2 < F < 0.8 as exogenous critical decay and F � 0.2 as
endogenous critical decay. There are some further comments that the classification between
the two exogenous cases is not significantly altered when varying the boundary between
F = 0.7 and F → 1. We have not calibrated our simulations to any of Crane and Sornette’s
data, and hence do not know how long the time increment in our updates is relative to their
data. The boundaries we choose for classification will therefore not have the same numerical
values; this will not, however, invalidate our study of the classification method. We find that
our simulated time series show two well-defined peaks in the distribution of peak fractions.
Choosing a cut-off of F < 0.2 to define exogenous critical and F > 0.2 to define exogenous
subcritcal decay (recall we do not treat the endogenous case) results in no misclassification.

Figure 5 shows a histogram of peak fractions of simulations with P(θ) = δ(θ − 0.4) and
with a Gaussian distribution. In both cases, there is an obvious divide between subcritically
decaying time series and critical decays. For a suitably placed boundary between high and
low peak fractions (F = 0.2), this method correctly classifies every single time series we have
studied.

8. Conclusions

The observed behaviour of the Hawkes process subject to external shock is, for the case of
a single-valued θ distribution, exactly as predicted in [1, 5]. When θ is drawn from a broad
distribution, the numerical values of the decay exponent are modified, but the overall picture
of critical and subcritical decays remains. Our results show a significant spread of fitted
decay exponents, though much less than that seen in the YouTube data reported in [1]. We
can, however, shed some light on this. We have good control of all the time series we fit to;
in particular, we ensure that they are all subject to the same size of fluctuation (by always
studying the same size of shock). Crane and Sornette do not have this luxury. Our fitting
to the tails of individual time series shows that the exponent can vary widely if the statistics
are poor (in some instances the best fit exponent is very different from that of the underlying
distribution of which a given time series represents a single sample). It seems likely that some
of the breadth in the range of exponents seen in [1] is caused by considering many time series
with poor statistics in the tail. By only considering time series with particularly large peaks
(relative to the background viewing rate), a set of decay exponents with lower variance might
be obtained. Of course, this would have a cost in terms of the overall statistics of the sample.

In addition, our study shows that the peak fraction classification method is a good one
and we suggest that carrying out this classification and then fitting to the ensemble average of
suitably normalized time series may give the best estimate of the decay exponents. We have
also shown that the least squares fitting method gives results that are not very different from
the maximum likelihood approach favoured here.

Our results demonstrate a way to test if θ is really a unique global constant (equivalently,
drawn from a δ-function distribution). The ensemble-averaged time series in this case
are measurably different from those where θ is broadly distributed with the same mean.
Particularly, we observe a crossover effect in the critical decay for a broad θ distribution that is
not present if θ is constant. If the time series can be correctly classified using the peak-fraction
method, an ensemble average of (suitably normalized) critical time series might be diagnostic
of whether θ is effectively constant or not.

Finally, we reiterate that although our analysis of synthetic Hawkes process data results
in a spread of fitted exponents within each dynamic class, this intrinsic noise does not fully
account for the much wider distributions seen in the YouTube data of Crane and Sornette
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[1]. This suggests limits to the universality concept which presumably underlies attempts
to classify activity bursts in social systems into ‘robust dynamic classes’ [1]. While the
Hawkes process is clearly useful in analysing real-world data from complex social systems,
some fairly basic observables, such as the variance of the exponent distribution for individual
activity bursts, are seemingly not captured by it. These aspects are thus either nonuniversal or
lie in the universality class of a more complex model than Hawkes.
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